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Abstract 

Background.  The Coherent Gradient Sensor (CGS) is a shearing interferometer which has been proposed for the rapid, full-

field measurement of deformation states (slopes and curvatures) in thin film-wafer substrate systems, and for the subsequent 

inference of stresses in the thin films.  This approach needs to be verified using a more well-established but time-consuming 

grain orientation and stress measurement tool, X-ray microdiffraction.  

Method of Approach. Both CGS and XRD are used to measure the deformation state of the same W film/Si wafer at room 

temperature.  CGS provides a global, wafer-level measurement of slopes while XRD provides a local micromeasurement of 

lattice rotations.  An extreme case of a circular Si wafer with a circular W film island in its center is used because of the 

presence of discontinuous system curvatures across the wafer.  The results are also compared with a theoretical model based 

on elastic plate analysis of the axisymmetric biomaterial film-substrate system. 

Results and Conclusions. Slope and curvature measurements by XRD and by CGS compare very well with each other and 

with theory.  The favorable comparison demonstrates that wafer-level CGS metrology provides a quick and accurate 

alternative to other measurements.  It also demonstrates the accuracy of plate theory in modeling thin film-substrate systems, 

even in the presence of curvature discontinuities. 

Keywords: Coherent Gradient Sensing, X-ray microdiffraction, thin film 
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Introduction and Motivation 

 As the semiconductor industry develops ever smaller dimensions of thin metal film interconnections and more complex 

multilayered (film stack) structures, the mechanical properties and stresses of thin films used for these structures become 

major factors in controlling the reliability of integrated circuits (ICs).  However, due to the small size of features of modern 

ICs, the only way to measure their stresses directly is using X-ray microdiffraction (XRD) since spot sizes are now becoming 

available at comparable dimensions to such features (e.g. 1 µm and below).  At the same time, it is impractical (very time-

consuming and costly) to routinely perform many X-ray studies across large areas on a wafer.  Therefore, it is desirable to 

develop another technique that can yield quick and full-field information regarding the stress state in film structures 

deposited on wafers, ideally to be used as a quality control tool.  A recent optical method developed by Rosakis and co-

workers at Caltech has been proposed for this purpose [1-3]. 

 Called coherent gradient sensing (CGS), this technique employs an expanded laser beam to measure all components of 

the curvature tensor field in thin film-substrate systems.  It does so in full-field and produces curvature component maps 

across the surface of the entire wafer.  CGS is insensitive to rigid-body motions, such as those induced by vibration, and is 

quite suitable for in-situ studies.  As such, it is ideal for quick, full-field measurements of macro stresses across a wafer 

surface and can easily be used in quality control.  It is further desirable, however, to attain stress state information at the level 

of individual features in a microelectronic circuit.  In this context, Rosakis at Caltech, Suresh at MIT and their coworkers 

[4-7] have developed sophisticated micromechanical models that relate the data obtained from CGS (macro stresses) to local 

(micro) stresses in circuits. 

 In this article, we first describe the CGS and XRD techniques, and then begin the process of validating the CGS 

methodology.  The first step, described here, is to compare curvature measurements made with both techniques on specimens 

with relatively simple features.  In the present experiment, a sample consisting of a circular W thin film island deposited on a 

much thicker circular Si substrate is used.  This radially symmetric geometry is particularly interesting because the 

discontinuous film thickness causes severe discontinuities in system curvatures across the island perimeter, which must be 

captured by both techniques for accurate measurement and comparison.  Since the sample is circular, the bare Si portion has 

its own curvature which also must be measured.  This sample is an excellent test specimen due to its radial geometry, large 

curvatures, and severe curvature discontinuities that develop because of the partial coverage of the Si substrate by the circular 

island.  The radial symmetry of the system is also amenable to analytical treatment.  Indeed an analysis of the relation 
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between film stress and system deformations (slopes, curvatures) is possible based on plate analysis of the thin film-substrate 

system [8]. 

Coherent Gradient Sensing (CGS) 

 The coherent gradient sensing (CGS) method is a self-referencing interferometric technique that produces fringe patterns 

of surface slope by laterally shearing an initially planar wavefront which has been reflected from a specimen (wafer).  Figure 

1a shows a schematic of the CGS setup in reflection [1-3]. A coherent, collimated laser beam (300mm or less in diameter) is 

directed to a reflecting wafer surface via a beam splitter. In general, the wafer is non-planar and its surface distortion can be 

described by the equation x3 = f(x1, x2). The beam reflected from the wafer is also distorted by the non-planar shape of the 

wafer. The resulting wave form is described by a two-dimensional surface in space whose equation is given by x3 = S(x1, x2), 

where S(x1, x2) = 2f(x1, x2). This distorted wavefront is again passed through the beam splitter and is then incident upon a pair 

of identical high-density gratings, G1 and G2, separated by a distance ∆. The gratings act to “shear” or “differentiate” 

optically the incident wavefront to produce a series of diffracted beams. These beams are separated using a filtering lens to 

form distinct diffraction spots on a filter plane. An aperture placed in this plane serves to isolate the diffraction order of 

interest, which is then imaged onto the photographic film plane. For present purposes, either of the ±1 diffraction orders is of 

interest, as will be clear in the following discussion. 

 Figure 1b is a two-dimensional schematic illustrating the principles of the CGS method. The figure shows the distorted 

optical wavefront, S(x1, x2), incident on the two gratings in which the lines are taken to be oriented along x1.  At the first 

grating, G1, the incident wavefront is diffracted into several wavefronts, E0, E1, E-1, E2, E-2, etc., of which only the first three 

are drawn in Fig. 1b.  Each of these wavefronts, in turn, is diffracted by the second grating, G2, to generate additional 

wavefronts, such as E0,0, E0,1, E0, -1, etc. The diffracted beams are combined by a filtering lens to produce diffraction spots, 

such as D0, D+1, D-1, etc., in the focal plane of lens (filter plane). One of the diffraction spots, typically the first diffraction 

order, the D+1 spot, is chosen for imaging onto the film plane with an aperture. 
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Fig. 1.  Schematic of the CGS setup in reflection mode (a) and its working principle (b). 

 The presence of the two gratings in the path of the optical wavefront generates a lateral shift (or shearing) of the 

wavefront. For example, the diffracted beam E1,0, whose wavefront is denoted as S(x1, x2+ω), is shifted from the beam E0,1, 

whose wavefront is denoted as S(x1, x2), by a distance ω in the x2 direction. The shift distance, ω, is expressed as ∆tanθ, 

where θ = arcsin(λ/p) is the diffraction angle and λ and p are the wavelength of light and the pitch of the gratings, 

respectively. For small angles of diffraction, ω ≈ ∆θ ≈ ∆(λ/p), the condition for constructive interference of the original and 

shifted wavefronts is given by 

 , (1) K2,1,0,),(),( )2()2(
2121 ±±==−+ nnxxSxxS λω

where n(2) is an integer that represents fringes associated with shearing along the x2 direction. By dividing Eq. (1) by ω, 

taking ω  to be sufficiently small, and substituting ω = ∆(λ/p), it is seen that 
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 Recalling that S = 2f and repeating the above analysis for gratings aligned along the x2 direction, it can be shown that the 

alternating dark and bright interference fringes correspond to constant values of components of the in-plane gradient of the 

wafer surface topography as follows: 
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2
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∆

=
∂

∂ α
α

α

npn
x

xxf , (3) 

where α, β ∈{1, 2}. A relative rotation of the gratings to the wafer allows for both orthogonal components of slope to be 

recorded in the form of full-field slope maps. The three independent components of curvature tensor field, καβ, can now be 

determined directly from two orthogonal CGS slope maps by partial differentiation along the x1 and x2 directions: 
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 In order to determine the full curvature tensor, the gradient fields in two orthogonal directions must be recorded. 

Equation (4), which applies to the shear (or twist) curvature component, κ12, as well as the normal curvature components, κ11 

and κ22, is the equation governing the curvature tensor field at any in-plane location (x1, x2).  It enables the global, full-field 

measurement of curvature for the film-substrate system.  For thin film-thick substrate systems the full-field recording of all 

system curvature components is crucial since they can be related to the individual components of stress acting on the thin 

film, through simple plate theory [4-7].  This provides an easy and quick way of film stress measurement that can be 

instantaneously performed across an entire wafer surface. 

X-ray Microdiffraction (XRD) 

 X-ray microdiffraction is a local measurement technique which, in general, uses the lattice spacing in a crystalline 

structure as a local micro-strain gage.  The incoming beam diffracts from the crystalline lattice to form Laue patterns, which 

can be analyzed to measure the sample strain and stress.  Synchrotron radiation, which was used in this experiment, has 

several advantages over traditional, commercially available laboratory-grade X-ray machines.  These include its very small 

beam size (~1x1µm), higher energy, and ability to use a polychromatic (white) X-ray beam.  In contrast, most lab X-ray 

machines feature large, monochromatic beam spot sizes of more than 100x100µm and are thus unable to resolve spatial stress 

occurring in thin film structures.  Also, while a polychromatic beam is used to determine the orientation and 3D deviatoric 

strain of each grain illuminated, a monochromatic beam takes an average measurement over all diffracting grains. 

 Laue patterns from a white beam form Laue spots (Fig. 2a), where each spot is generated by a specific X-ray energy 

selected by the given lattice plane.  A sophisticated software program then deconvolutes these patterns and indexes them, 

identifying individual patterns from each grain [9]. From this analysis, one can determine the orientation matrix of each grain 

as well as its deviatoric strain.   (The deviatoric stress is then found using Hooke’s law [10].)  When there are too many 

grains in an image, the software is unable to determine which spots correspond to which grains, and cannot analyze the 

image.  Therefore, white X-rays are used when the grain size is comparable to or larger than the beam size.  
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slope in xz plane = tan(α).

f a single crystal specimen, the orientation matrix measured is always from the same grain.  Once the crystal 

ained at each location across the specimen, the relative slope and curvature are then determined by tracking 

e vector defining the grain normal with respect to the lab coordinate system.  For a scan along the x axis 

r), we are only concerned with the slope changes in the xz plane.  This slope is equal to tan(α), where α is 

gle between the projection of the grain normal in the xz plane and the z axis in the lab reference frame (Fig. 

y symmetric sample on which the scan is performed along the diameter, where y = 0, cylindrical coordinates 

e radial slope, ∑f/∑r = tan(α), and the circumferential curvatures κrr and κθθ are then determined from 

rr
f

rr ∂
∂

=
∂
∂

=
)(tan

2

2 ακ ,  (5) 

)(tan11 ακθθ rr
f

r
=

∂
∂

= .  (6) 

ent described here was performed at beamline 7.3.3 at the Advanced Light Source (ALS) at Lawrence 

al Laboratory in Berkeley, CA.  At this beamline we can measure curvature and strain in the silicon 

l as strain in thin films [9].  The reflection X-ray setup is shown in Fig. 3.  In this experiment, white X-rays 

asure the grain normal orientation across the sample. 
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at room temperature.  Using the CGS method, slope, curvature, and stress maps 

LS, pointwise XRD measurements were made along almost the full diameter of 

, yielding the single-crystal Si grain orientation at each point.   

film-substrate system was chosen in such a way as to feature severe slope and 

m of curvature discontinuities occurring at the edge of the film island.  It was 

mps across such discontinuities will provide a test for validating CGS 

spatial resolution of the XRD measurements (order of 1µm) was definitely 

ns anticipated.  Moreover, the geometry was intentionally kept simple enough 

terpretation of the results.  Further it was chosen in such a way as to allow for 

ations describing the substrate deformation.  The direct comparison of the 

lts of the analysis was anticipated to provide further guidance on the 

 shed light on the ability of elastic plate theory to analyze film-substrate 

metries. 
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Theoretical Predictions 

 The axisymmetric nature of the film substrate system allows for elastic plate theory and the thin film approximation to 

relate the system curvature fields to the stress in the circular island film.  The theoretical development, whose details will be 

presented elsewhere, considers a circular film of thickness hf and radius Rf deposited in the center of a circular substrate of 

thickness hs and radius Rs.  The film thickness is much smaller than that of the substrate (hf << hs).  The Young’s moduli of 

the film and the substrate are denoted by Ef and Es respectively while their Poisson’s ratios are denoted by νf and νs.   

 The analysis considers the special case in which both film and substrate are composed of isotropic linear elastic solids, 

characterized by the above moduli.  It is further assumed that the film features an in-plane isotropic, or equibiaxial, stress 

state characterized by a film stress σf such that σxx = σyy = σf and σzz = 0 in any proper orthogonal coordinate frame such that 

the x and y axes lie on the plane of the film (or the wafer).  Alternatively, if a polar coordinate system centered at the island 

center is used, this is equivalent to σrr = σθθ = σf where σrr and σθθ are the radial and circumferential stress components, 

respectively.  Perhaps the most severe restriction of the analysis is that stresses are not allowed to vary across the film (i.e. 

∑σf /∑r = 0) and are restricted to remain spatially constant. 

 Under the above assumptions an elastic boundary value problem can be formulated which relates the radially varying 

system curvatures to the constant and equibiaxial film stress σf.  Because of the system’s radial symmetry, the only non-zero 

component of the slope vector is ∑f/∑r while the only non-vanishing components of the curvature tensor are κrr = ∑2f/∑r2 and 

κθθ = (∑f/∑r)/r, the radial and circumferential curvatures, respectively.  Axisymmetry requires that the twist curvature 

component κrθ vanishes throughout the system. 

 The analysis shows that the sample curvature within the film-covered region is spatially constant and equibiaxial, i.e. κrr 

= κθθ = κ, where κ is independent of the radial position r.  In this region the sample curvatures are given by  

 f
s

fs

ss

sff
rr Rr

R

R

hE

h
≤≤−

−
−

−
=== 0)],1(

2
1

1[
)1(6

2

2

2

ννσ
κκκ θθ . (7) 

 In this region the system deforms as a sphere.  It should be noted that for Rf = Rs (full film coverage of the wafer) Eq. (7) 

coincides with the predictions of the well-known Stoney formula [12] which relates constant film stress to constant system 

curvatures as described in [4].  This is an anticipated limiting behavior. 
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Fig. 5.  Theoretical prediction of surface (a) curvature and (b) slope across the diameter of a radially symmetric circular wafer

with a circular film island in the center.  The assumed film stress is -2 GPa. 
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 Outside the film covered region, however, the predictions are quite unexpected.  Here the system curvatures κrr and κθθ 

are not equal and are strong functions of the radial position r.  Despite the fact that this region is not covered by the film, its 

curvature components are non-zero and their magnitude depends on the magnitude of the stress of the film island as  
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What is also remarkable is that comparison of the expressions for κrr from within and outside the film-covered region reveals 

a finite jump in radial curvature which involves a change of curvature sign across the circular interface r = Rf. 

 The radial slope component ∑f/∑r can now be computed from Eq. (7) and (8) and is given by the following relations for 

the two regions: 

 frr Rrrrr
r
f

≤≤===
∂
∂ 0,κκκθθ , (9) 
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 Within the film-covered region, there is a linear variation of slope with position while the variation of slope outside the 

film-covered region is more complex.  At the interface r = Rf, the slopes are, as expected, continuous.  Figure 5 shows the 

predicted variation of the two non-zero curvature components and the radial slope component.  The figure is plotted by using 
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the geometry and material parameters of the W-Si system described above and an assumed film stress, σf, of -2 GPa.  The 

theoretically predicted features discussed above are obvious from the figure. 

Results and Discussion 

 By using CGS interferometry, the same sample was measured to obtain slope interferograms and digitized full-field 

slope maps in the x and y directions (Fig. 6).  Since these are in Cartesian coordinates, only the data along the diameters, the 

extracted linear dataset from these maps, can be directly converted to radial slopes.  It is worth noting that the Cartesian slope 

maps in each orthogonal direction differ by only a 90° rotation, as is expected for a radially symmetric sample. 

 The film island is distinctly visible on the x and y interferograms (Fig. 6a,c) as a circle in the middle of the picture.  The 

fringe pattern in that region consists of dense, straight, evenly spaced lines that correspond to a constant equibiaxial 

curvature, as predicted by the analysis.  Outside the film island, there is still a less dense but more complex fringe pattern, 

since there is a non-zero curvature in that area due to the circumferential constraints on the Si wafer.  This is also 

qualitatively consistent with the analysis. 

 

(a) (b)  

 

(c) (d)  
Fig. 6.  CGS slope measurements in the x and y directions.  Horizontal, ∂f/∂x: (a) wafer image and (b) horizontal slope map. 

Vertical, ∂f/∂y: (c) wafer image and (d) vertical slope map. 

 Further image analysis can at this point proceed in two ways – either to the wafer shape, through integration of the slope 

maps, or to curvature maps, through differentiation of slope components.  Integration of the slope maps yields the surface 

topography of the wafer, as shown in Fig. 7.  Consistent with theory (Fig. 5), the sign of the radial curvature component κrr 

changes across the film edge.  The film region has a negative, constant curvature; there is a jump in curvature from negative 

to positive at the film edge; and there is a non-zero curvature outside the film. 
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 slope maps can also be used to calculate the two direct (κxx and κyy) and the twist (κxy) Cartesian curvature maps 

  Again, the x and y curvature maps are very similar, with the noticeable difference being due to the graph color scale.  

e the diagonal symmetry in the twist curvature map.  Both of these indicate a radially symmetric curvature state, as 

 from the radial sample geometry.   

 

(a) (b) 

(c) (d)  
Fig. 8.  CGS curvature maps in the x, y and twist directions: (a) horizontal map, κxx = ∂2f/∂x2, 
(b) vertical map, κyy = ∂2f/∂y2, (c) twist map, κxy = ∂2f/∂x∂y, (d) principal curvature, κmax = κrr 

 radial symmetry is verified by calculating the maximum, principal curvature map (Fig. 8d) by using the following 

[3]:   

22
max 4)(

2
1

2 xyyyxx
yyxx κκκ

κκ
κ +−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
= . (11) 

 



A Comparison of X-ray Microdiffraction and Coherent Gradient Sensing in Measuring Discontinuous Curvatures in Thin Film – Substrate Systems 
 

Brown 

The obvious radial symmetry of this map shows that the axixymmetry assumption of the theory is relevant in this case and 

implies that κmax = κrr. 

 In order to differentiate the slope maps to obtain curvature, a numerical analysis fits the data to a polynomial function.  

In most cases, where spatial variations of curvature are gradual, this is advantageous since it removes noise.  This particular 

sample, however, has a highly nonuniform geometry, which corresponds to unusually high gradients in slope and jumps in 

curvature which are lost in the numerical smoothing process.  Indeed, the film-covered region should have a constant 

curvature, or linear slope, which corresponds with straight, evenly spaced vertical lines on the horizontal slope map.  There 

should also be a sharp transition between the slope of the film covered and that of the bare Si regions.  Instead, Fig. 9b 

features only approximately vertical lines in the film-covered regions, and only a gradual change to the bare Si region.  To 

circumvent this problem, the numerical smoothing was artificially removed and the resulting unsmoothed digital slope map is 

displayed in Fig. 9c.  In this figure (with no filtering or smoothing), the anticipated straight evenly spaced lines within the 

film are clearly visible.  The sharp transition between the constant and varying curvature inside and outside the film is also 

recorded.  In fact, the film-covered circular island can be easily traced out on this map.  
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Fig. 9. (a) Horizontal interferogram and slope maps: (b) with filtering and smoothing and 

(c) with no smoothing (raw data) 
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der to directly compare CGS slope measurements with the XRD data taken along the sample diameter, a linear 

lso selected across the same diameter of the sample (Fig. 10a), was extracted from both slope maps in Fig. 6.  Figure 

s the difference between the smoothed and unsmoothed CGS data, compared with XRD across the same region.  In 

RD and the unsmoothed CGS data, there is a sharp transition across the film island edges.  This transition from one 

ime to the other is predicted by theory in Eq. (9) and (10) and is due to the discontinuous film geometry as discussed 

vious section.  By contrast, the smoothed CGS slope data completely miss this sharp transition by oversmoothing 

terferogram. 
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able agreement between the raw CGS data and the XRD measurements provide a clear indication that 

 properly interpreted, can provide an excellent means of measuring deformations even at the presence 

continuities.   It should be noted at this point that at the vicinity of the film-covered area, X-ray 

ere taken every 0.1 mm, which accounts for the high density of data reported in Fig. 10b.  A total of 

e taken across the wafer diameter.  This measurement, although very spatially resolved, was very 

l of 3 hours to complete.  In contrast, the CGS measurement was almost instantaneous and was only 

on time of the CCD camera used to record the interferograms.  

2Rf 

(a)   

2Rf

(b)

∂f
/∂

r 

 
 of (a) XRD and (b) CGS data with theoretical predictions, using film stress as the fitting parameter. 

S slope data were also compared with theoretical predictions (Fig. 11), using the film stress as the 

 in Eq. (11).  The comparison is quite good – for a given film stress, the shape and magnitude of the 

ata, CGS data and theoretical prediction are all extremely close.  This implies that even in the presence 

continuities of the type displayed in Fig. 5, plate theory does a remarkable job in capturing the wafer 
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Conclusions 

 Coherent Gradient Sensing (CGS) interferometry provides a full-field, real-time, in-situ slope and curvature 

measurement over the entire wafer surface.  Non-uniform deformations have been measured using CGS interferometry in a 

partially covered film (island pattern).  Highly resolved X-ray microdiffraction has been used to obtain slope and substrate 

curvature data from the same wafer for validation of the CGS measurement.  Slope and curvature values measured from CGS 

interferometry are highly consistent with X-ray microdiffraction data and also with theoretical predictions of discontinuous 

curvature states. 
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